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The Classification and Mixture Maximum Likelihood
Approaches to Cluster Analysis

G.J. McLachlan

1. INTRODUCTION

A common and very old problem in statistics is the separation of a
heterogeneous population into more homogeneous subpopulations. We con-
centrate here on the situation where the population of interest, I, is

known or assumed to consist of, say, k different subpopulations Hl""’nk'

s and where the density of a p-dimensional observation x from I[i is

- known or assumed to be fi(f;g) for some unknown vector of parameters,
9 (i=1l,...,k). In this context the problem may be formulated as follows:
Given a random sample of observations XpseoesX, from II, attgmpt to

allocate each xj to the subpopulation to which it belongs. We let

Y' = (Yl,...,yn) denote the set of identifying labels, where Yj = {

~

if xj comes from Hi' This would be the classical discrimination

problem if Yy were known a priori; a discrimination procedure would be
formed from the classified sample for the allocation of subsequent obser-
vations of unknown origin.

In what is sometimes called the classification maximum likelihood

- procedure, 9 and Yy are chosen to maximize
»
3 n
3 Lc(fl,...,fh;g,!) = I fY (f ;g) . (1.1)
N =1 'j
>
-8
13
s The maximization is over the set of values of Yy corresponding to

all possible assignments of the x, to the various subpopulations

as well as over all admissible values of 6. The estimates of 9

~

LSl

and Yy so obtained are denoted by 6 and Yy respectively. The

d *To appear in Vol. II of the Handbook of Statistics (edited by P.R.
A Krishnaiah and L. Kanal).
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XyseeesX, are then clagsified according to the estimates Yl....,yn;

for example, x

~3
has been considered by several authors including Hartley and Rao [14],

is assigne§ to Hg if Yj = g. This procedure

John [17}, Scott and Symons [31], and Sclove [30]. Unfortunately, with
this procedure, the Yj increase in number with the number of observa-
tions, and under such conditions the maximum'likelihood estimates need
not be consistent. Marriott [23] pointed out that under the standard
assumption of normal distributions with common variance matrices, this
procedure gives definitely inconsistent estimates for the parameters
involved. More recently, Bryant and Williamson [4] extended Marriott's
results and showed that the method may be expected to give asymptotically
biased results quite generally.

A related approach is the mixture maximum likelihood method
considered by Day [5], and Wolfe [34]), among many others. With this
approach XyseeerX, are assumed to be a random sample of gize n
from a mixture of Hl,...,Hk in the proportions (el,...,ek) - E'.

Hence the likelihood

n k
(Xy,0005% 30,6) = T {] €, £ (x,;0)}
Iy(Zpseee02qi08 PP T v
can be formed; the estimates of 6 and € obtained by maximizing
(1.2) are denoted by 6 and € respectively. Each xy can be

clagsified then on the basis of the estimated posterior probabilities

~

Pij (1=1,...,k) formed by replacing 6 and € with 6 and € in

v o e R e WY R TR~ e i V. WY G 1 Rl e ¢

(1.2)
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It can be seen that the mixture approach is equivalent to the
clagsification procedure with the additional assumption that
YyooeesYy is an (unobservable) random sample from a probability
distribution with mass e, at i (i=1,...,k). It appears to avoid
the asymptotic biases associated with the classification procedure
where at each step in the iterative process of computing the maximum
likelihood estimates each fj is assigned outright to a particular sub-
population according to the estimate for Yj' By contrast, the mixture
approach does not insist on definite membership to any subpopulation;
rather it gives an estimated probabilityof membership of each subpopulation.
Note that another approach to this problem is to proceed further and
adopt a Bayesian procedure in which all parameters are random variables

(Binder [2], Symons {32]).

A common assumption in practice is to adopt the normality model

fj ~ N(Ei,g) in Hi (1=1,...,k) . (1.3)

In this case § has %%p(p+2k+1) elements, comprising the components
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of the k mean vectors ui and the distinct elements of the common

covariance matrix I, and the density fi(x;G) is given by
- -1 1 -
£oipoD) = @0 72P |z e 3 Gt TG

We now proceed to consider the application of the classification and
mixture approaches under the normality model (1.3) which is assumed
to hold through to Section 5, where the condition of a common covari-
ance matrix is relaxed to cover the general case of unequal covariance

matrices.

2. CLASSIFICATION APPROACH

In principle the maximization process for the classification maximum
likelihood procedure can be carried out since it is just a matter of
computing the maximum value of the likelihood (1.1) over all possible
partitions of the n observations to the k subpopulations. However,
unless n 1s quite small, gearching over all possible partitions is
prohibitive. It follows that ;j = g 1if

-~ -~

x4 ;gs.g) > f(x

f( 5

D, (=10 , (2.1)

where ﬁi and

[ ]

are the ordinary maximum likelihood estimates of

¥y and I for a sample of normal observations classified according

to vy. Hence the solution can be computed iteratively (Jobn [17],

-~

Sclove [30]). Starting with some initial clustering Yy, the u,
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and § are estimated accordingly and then used to give a new estimate
of y on the basis (2.1), equivalent to allocating each observation to
the ﬁearest cluster centre in terms of the estimated Mahalanobis distance.
Each step in the iterative process yields a value of the likelihood not
less than that at the previous step, and the iterations may be continued
until no observation changes clusters. Various starting values should be
taken in an attempt to locate the global solution. It will be seen in
the next section that the likelihood equations under the mixture approach
can be easily modified to be applicable also under the classification
approach. There are other procedures for finding the solution under the
classification approach; for example, the Mahalanobis distance version
of MacQueen's [20] k-means procedure, where the By and § are re-
estimated after each observation is allocated rather than waiting until
after all the observations have been allocated.

For the classification approach applied under the normality model
(1.3), Scott and Symons [31] ahowed that i corresponds to the partition

which minimizes the determinant of the pooled within-subpopulations sum

of squares matrix

:
W= w, .,
~ gmp 1
where
oy
W, - 1 (x -;1)(::1 -;i)'
and xiq (q-l....,ni) denote the n, observations assinged to II1

5
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according to Y and g; refers to their sample mean; see also
Friedman and Rubin {9] who originally suggested this criterion.

The minimization of IHI would appear to be a reasonable clustering
criterion regardless of the underlying distributions. Marriott

[22] has given a comprehensive account of the properties of this
criterion. It does have the tendency to produce clusters of roughly

equal size, although the modified version,

k
n 1oglgl -2 2 n, log n

i=1 i

suggested recently by Symons [32], would appear to go some way to

overcoming this.

3. MIXTURE APPROACH

An excellent account of the computation of the maximum likelihood
estimates of ui,E, and € for the mixture approach has been given by
Day [5]. Under the normality model (1.3), the posterior probabilities

Pij(isl,...,k;jsl,...,n) have the form

k
Pyy = exp(a g+ b/ | exple, xy+b)

™1 ]

where
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br Z(Bl+gr) § (El Er) + 108(€r/€1)

for r=1,...,k; that is, a = 9 and b1 = 0. The maximum likeli-

hood estimates are evaluated from the equations

~ n a
€ = z Pij/n

j=1
-~ lf ~ ~
M, = (P,.x.)/(n €))
b4 Pul 1

and

k n A ~
- 121 321 (Byy/m)Cxy -1 ) (x

A

3 Yy

M)

)"

which can be solved iteratively by substituting some initial values
for the estimates into the right-hand side of (3.1) to (3.3) to
produce new estimates on the left-hand side, which are then substi-
tuted into the right-hand side, and so on. These iterative estimates
can be identified with those obtained by directly applying the so-
called EM algorithm of Dempster et al. {6], which shows that the
estimates will converge to a local maximum irrespective of the

starting point. The iterative process should be started from several

points in an attempt to emnsure that the global maximum is obtained.

(3.1)

(3.2)

(3.3)
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Day [5] has shown that considerable computing time can be saved
for k = 2 by reparametrizing the likelihood in terms of a, b, m,
and V, where
m= €

m = €Uy e,

and

= - k] - \J
V=t e,y -u) Gy - 1y)

and the mean and covariance matrix of the mixture distribution; a
and b denote a, and b2 with their subscripts suppressed since

k = 2 only. The maximum likelihood equations now can be written as

~ n
m = Z x,/n ,
~ 5= -
~ n ~ A
v=J (xj-m)(x -m)'/n ,
a =9 —n 1,0, Gy -3V G~ )
~ ~ <2 21 172701 L2 ~ X1 R2
and
~ l /\' A ~ ~ ~
b=-3a (31""32) + 1og(52/el) .
Only values of a and b are needed in solving the above equations

as m and V are given explicitly.

(3.4)

(3.5

(3.6)

(3.7)

-
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To obtain suitable initial values of a and b, it is suggested
for various bivarijate subsets of the variables plotting the data points
and drawing a line which divides the data into two groups which have a
scatter that appears normal (see, for example, 0'Neill [28] and
Ganesalingam and McLachlan [12)). Estimates of a and b can be
formed on the basis of this subdivision, proceeding as if the observa-
tions were correctly classified. There appears to be no difficulty in
locating the global maximum for p =1 and 2, but for p > 3 there
are problems with multiple maxima, particularly for small values (less

than two, say) of the Mahalanobis distance between @I, and I

1 2

b= {ty-u)’ )5-1(51‘1‘2)}1/2 ,

when n is not large (Day [5]). Also, it is well-known (Day [5] and
Hosmer [16])) that maximum likelihood estimates based on a mixture of
normal distributions are very poor unless n 1is very large (for

example, n > 500). However, Ganesalingam and McLachlan [11] found

that although the maximum likelihood estimates a and b may not-

be very reliable for small n, it appears that the proportions in
which the components of a and b occur are such that the resulting

A

discriminant function, a'x+b, may still provide reasonable separation
between the subpopulations.
Note that the same set of equations here can be used as follows

- -~ -~

to compute the estimates Bys I, and Yy under the classification approach.

el 2
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At a given step 7Y, is put equal to that g for which P , > P

k|
(i=1,...,k) where, in the P

8l i3

15° br is used without the
log(erlel) term. Then on the next step the My and I are computed

A

from (3.1) to (3.3) in which, for each j, Pij is replaced by 1

(i=g) and O (i#g). The transformed equations (3.4) to (3.7) for

k=2 are also applicable to the classification approach with the above
modifications; that is, the term corresponding to ;i in (3.6) is given
by ni/n (i=1,2) while there is no term corresponding to log(gzlgl) in
(3.7).

A simulation study undertaken by Ganesalingam and McLachlan [13]
for k=2 suggests that overall the mixture approach performs quite
favourably relative to the classification approach even where mixture
sampling does not apply. The apparent slight superiority of the latter
approach for samples with subpopulations represented in approximately

equal numbers is more than offset by its inferior performance for

disparate representations.

4. EFFICIENCY OF THE MIXTURE APPROACH

We consider now the efficiency of the mixture approach for k=2
normal subpopulations, contrasting the asympotic theory with small
sample results available from simulation.

For a mixture of two univariate normal distributions Ganesalingam
and McLachlan [10] studied the asymptotic efficiency of the mixture
approach relative to the classical discrimination procedure (appropriate

for known 7Y) by considering the ratio

10
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e = {E(R) -Ro} /{E(n“) -R}, (4.1)

where E(RM) and E(R) denote the unconditional error rate of the
mixture and classical procedures respectively applied to an unclassi-
fied observation subsequent to the inital sample, and R.0 denotes
their common limiting value as n + . The asymptotic relative
efficiency was obtained by evaluating the numerator and denominator
of (4.1) up to and including terms of order 1/n. The multivariate
analogue of this problem was considered independently by 0'Neill

[28). By definition the asymptotic relative efficiency does not
depend on n, and 0'Neill [28] showed that it also does not depend
on p for equal prior probabilities, €y = 0.5. The asymptotic
values of e are displayed in Table 1 as percentages for selected
combinations of A2, €ys» Py and n; the corresponding values of e
obtained from simulation are extracted from Ganesalingam and McLachlan
{11} and listed below in parentheses. It can be seen that the asymptotic
relative efficiency does not give a reliable guide as to the true
relative efficiency when n 1s small, particularly for A = 1. This
is not surprising since the asymptotic theory of maximum likelihood
for this problem requires n to be very large before it applies (Day
{5], Hosmer {16]). Further simulation studies by Ganesalingam and
McLachlan {11] in the univariate case indicate that the asymptotic

relative efficiency gives reliable predictions at least for = > 100

and 4 > 2,

11
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The simulated values for the relative efficiency in Table 1
suggest that for the mixture approach to perform comparably with the
classical discrimination procedure it needs to be based on about two
to five times the number of initial observations, depending on the

combination of the parameters.

5. UNEQUAL COVARIANCE MATRICES

For normal subpopulations Hi with unequal covariance matrices
?.i’ the classification procedure has to be applied with the restric-
tion that at least p+1 observations belong to each subpopulation
to avoid the degenerate case of infinite likelihood.

The likelihood equations under the mixture approach are given by
(3.1) to (3.3) appropriately modified to allow for k different co-
variance matrices (Wolfe [34]). Unfortunately, maximum likelihood
eatimation breaks down in practice for each data point gives rise to
a singularity in the likelihood on the edge of the parémeter space.
This problem has received a good deal of attention recently. For a
mixture of two univariate normal distributions, Kiefer [18] has shoun
that the likelihood equations have a root§ which is a consistent,
asymptotically normal and efficient estimator of ¢ = (9',5')'. Quandt
and Ramsey [29] proposed the moment generating function (MGF) estimator
obtained by minimizing

h n tix 2
} (e - § e tdm
1=1 =1

12
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for selected values tl,...,th of t in some small interval (c,d),

c <0< d, where

2
1 22
Y(e) = 1.2.1 ey explu e+ 5 aft")

is the MGF of a mixture of two normal distributions with variances
2

o1 and Og . The usefulness of the MGF method would appear to be
that it provides a consistent estimate which can be used as a starting
value when applying the EM algorithm in an attempt to locate the root
of the likelihood equations corresponding to the consistent, asympto-
tically efficient estimator. Bryant [3] suggests taking the classifi-
cation maximum likelihood estimate of 9 as a starting value in the
likelihood equations.

The robustness of the mixture approéch based on normality as a
clustering procedure requires investigation. A recent case study by
Hernandez-Alvi [15] suggests that, at least in the case where the
variables are in the form of proportions, the mixture approach may be

reasonably robust from a clustering point of view of separating samples

in the presence of multimodality.

6. UNKNOWN NUMBER OF SUBPOPULATIONS

Frequently with the application of clustering techniques there is
the difficult problem of deciding how many subpopulations, k, there

are. A review of this problem has been given by Everitt [8]; see also

13
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Engelman and Hartigan [7] and Lee [19]. With respect to the classifica-
tion approach Marriott [21] has suggested taking k to be the number
which minimizes kzlyl. For heterogeneous covariance matrices there
may be some excessive subdivision, but this can be rectified by recombin-
: ing any two clusters which by themselves do not suggest separation was
é necessary.

With the mixture approach the likelihood ratio test is an obvious
criterion for choosing the number of subpopulations. However, for
testing the hypothesis of, say, kl versus k2 subpopulations
(k1 < kz), it has been noted (Wolfe [35]) that some of the regularity
conditions are not satisfied for minus twice the log - likelihood ratio
to have under the null hypothesis an approximate chi-square distribution
with degrees of freedom equal to the difference in the number of parameters

in the two hypotheses. Wolfe [35] suggested using a chi-square distribution

with twice the difference in the number of parameters (not including the

. proportions), which appears to be a reasonable approximation (Hernandez-Alvi
»

. [1s]).

¢

¢

i; 7. PARTIAL CLASSIFICATION OF SAMPLE

L3

.

We now consider the situation where the classification of some of
the observations in the sample is initially known. This information can
be easily incorporated into the maximum likelihood procedures for the

classification and mixture approaches. If an x, 1is known to come from,

3

say Hr, then under the former approach Yj = r always in the associated

iterative process while, under the latter, PiJ is set equal to 1(i=1r)

14
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and O0(ifr) 1in all the iterations. In those situations where there

are sufficient data of known classification to form a reliable discri-
mination rule, the unclassified data can be clustered simply according

to this rule and, for the classification approach, the results of
McLachlan [24,25] suggest this may be preferable unless the unclassified
data are in approximately the same proportion from each subpopulation.
With the mixture approach a more efficient clustering of the unclassified
observations should be obtained by simultaneously using them in the
estimation of the subpopulation parameters, at least as n * «», since

the procedure is asymptotically efficient. The question of whether it

is a worthwhile exercise to update a discrimination rule on the basis of

a limited number of unclassified observations has been considered recently
by McLachlan and Ganesalingam [26]. For other work on the updating problem
the reader is referred to Titterington [33], Murray and Titterington [27],

and Anderson [1].
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TABLE 1

Asymptotic Versus Simulation Results for the

Relative Efficiency of the Mixture Approach

P=1l, n=20 p=2 , n=20 pP=3, n=40
€l=0.25 €1=0.50 €1=0.25 €,=0.50 €1=0‘25 €, =0.50
0.25 0.51 0.34 0.51 0.42 0.51
(33.01) (25.12) (46.71) (63.11) (25.00) (43.39)
7.29 10.08 9.36 10.08 10.51 10.08
(22.05) (17.74) (25.73) (l6.26) (16.28) (14.51)
31.41 35.92 35.13 35.92 36.78 35.92
(19.57) (23.54) (43.91) (29.63) (29.01) (23.46)
16




(1]

2]

(3]

[4]

[5]

{6}

(7]

(8}

9]

{10]

REFERENCES

Anderson, J.A. (1979). Multivariate logistic compounds. Biometrika,
66, 7-16.

Binder, D.A. (1978). Bayesian cluster analysis. Biometrika, 65,
31-38.

Bryant, P. (1978). Contribution to the discussion of the paper by

R.E. Quandt and J.B. Ramsey. Journal of the American Statistical

Association, 73, 748-749,

Bryant, P. and Williamson, J.A. (1978). Asymptotic bhehaviour of
classification maximum likelihood estimates. Biometrika, 65, 273-281.
Day, N.E. (1969). Estimating the components of a mixture of normal
distributions. Biometrika, 56, 463-474.

Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likeli-

hood from incomplete data via the EM algorithm. Journal of the Royal

Statistical Society, Series B, 39, 1-38.

Engelman, L. and Hartigan, J.A. (1969). Percentage points of a test

for clusters. Journal of the American Statistical Association, 64,

1647-1648.

Everitt, B.S. (1979). Unsolved problems in cluster analysis.
Biometrics, 35, 169-181.

Friedman, H.P. and Rubin, J. (1967). On some invariant criterion for

grouping. Journal of the American Statistical Association, 62, 1159-1178.

Ganesalingam, S. and McLachlan, G.J. (1978). The efficiency of a linear
discriminant function based on unclassified initial samples. Biometrika,

65, 658-662.

17




b Ll

(11]

(12]

(13]

[14]

(15]

(16]

{17]

(18]

(19]

Ganesalingam, S. and McLachlan, G.J. (1979). Small sample results
for a linear discrimingnt function estimated from a mixture of

normal populations. Journal of Statistical Computation and Simula-

tion, 9, 151-158.

Ganesalingam, S. and McLachlan, G.J. (1979). A case study of two
clustering methods based on maximum likelihood. Statistica
Neerlandica, 33, 81-90.

Ganesalingam, S. and McLachlan, G.J. (1980). A comparison of the
mixture and classification approaches to cluster analysis. Communi-

cations in Statistics - Theory and Methods, A9, 923-933.

Hartley, H.0. and Rao, J.N.K. (1968). Classification and estimation

in analysis of variance problems. Review of International Statistical

Institute, 36, 141-147,

Hernandez-Alvi, A. (1979). Problems in Cluster Analysis. Unpublished
D. Phil. thesis, University of Oxford.

Hosmer, D.W. (1973). On MLE of the parameters of a mixture of two

normal distributions when the sample size is small. Communications

in Statistics, 1, 217-227.

John, S. (1970). On identifying the population of origin of each
obgervation in a mixture of observations from two normal populations.

Technometrics, 12, 553-563.

Kiefer, N. (1978). Discrete parameter variation: efficient estimation
of a switching regression model. Econometrika, 46, 427-434.

Lee, K.L. (1979). Multivariate tests for clusters. Journal of the

American Statistical Association, 74, 708-714.




- -

o< ooy T

(20]

[21]

[22]

[23]

[24)

[25)

[26]

[27]

[28)

[29]

MacQueen, J. (1966). Some methods for classification and analysis

of multivariate observations. Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, 1, 281-297.

Marriott, F.H.C. (1971). Practical problems in a method of cluster
analysis. Biometrics, 27, 501-514.

Marriott, F.H.C. (1974). The Interpretation of Multiple Observations.
Academic Press, London.

Marriott, F.H.C. (1975). Separating mixtures of normal distributions.
Biometrics, 31, 767-769.

McLachlan, G.J. (1975). Iterative reclassification procedure for
constructing an asymptotically optimal rule of allocation. Journal

of the American Statistical Association, 70, 365-369.

McLachlan, G.J. (1977). Estimating the linear discriminant function
from initial samples containing a small number of unclassified observa-

tions. Journal of the American Statistical Association, 72, 403-406.

McLachlan, G.J.and Ganesalingam, S. (1980). Updating a discriminant
function on the basis of unclassified data. Technical Report No. 47 ,
Department of Statistics, Stanford University.

Murray, G.D. and Titterington, D.M. (1978). Estimatfon problem with

data from a mixture. Applied Statistics, 27, 325-334.

0'Neill, T.J. (1978). Normal discrimination with unclassified data.

Journal of the American Statistical Association, 73, 821-826.

Quandt, R.E. and Ramsey, J.B. (1978). Estimating mixtures of

normal distributions and switching regressions. Journal of the

American Statistical Association, 73, 730-738.

19




[30]

(31)

[32]

(33]

(34]

(35])

Sclove, S.L. (1977). Population mixture models and clustering

algorithms. Communications in Statistics - Theory and Methods

A6, 417-434.

Scott, A.J. and Symons, M.L. (1971). Clustering methods based

on likelihood ratio criteria. Biometrics, 27, 387-397.

Symons, M.J. (1980). Clustering criteria for multivariate normal
mixtures. Biometrics, 37 (to appear).

Titterington,D.M. (1976). Updating a diagnostic system using

unconfirmed cases. Applied Statistics, 25, 238-247.
Wolfe, J.H. (1970). Pattern clustering by multivariate mixture

analysis. Multivariate Behavioral Research, 5, 329-350.

Wolfe, J.H. (1971). A Monte-~Carlo study of the sampling distribu-
tion of the likelihood ratio for mixtures of multinormal distributionms.

Technical Bulletin STB 72-2, Naval Personnel and Training Research

Laboratory, San Diego.




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE A NSTRUCTIONS

BEFORE COMPLETING FORM
[T REPORT NUMBER 2. GOVYT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
299 AD-A4LAL 0§ 4
4. TITLE (and Sudtitle) S. TYPEZ OF REPORT & PERIQD COVERED
THE CLASSIFICATION AND MIXTURE MAXIMUM

LIKELIHOOD APPROACHES TO CLUSTER ANALYSIS TECHNICAL REPORT

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 5. CONTRACY OR GRANT NUMBER(s)

NO0014-76-C-0475
"G. J. McLACHLAN

9. PERFORMING ORGANIZATION NAME AND AQDRKSS 70, ::ggn.as:othzﬁﬁ:&o'fi:rw—"

] Department of Statistics YrH
8 Stanford University NR-042~267
F. Stanford, CA 94305
' 1. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
e OFFICE Of Naval Research MARCH 12, 1981

Statistics & Probability Program Code 436 '3. NUMBEN OF PAGES

Arlingt VA 20

4. MONITORING AGENCY NAME & ADORESS(!f diiferent from Controlling Office) 18. SECURITY CLASS. (of thie report)
UNCLASSIFIED

T —————
188, DECL ASSIFICATION/ DOWNGRADING
SCHEOQULE

e t—
16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, il dllferent from Report)

ts. SUPPLEMENTARY NOTES

;:' 19, KEY WORDS (Continue an reverse eide If y and identily by block number)

Ry Cluster analysis, maximum 1ikelihood approach, multivariate normal

-_\’ distributions.

‘ . 20. ARSI RACT (Continue on reveres side If y and identily by dlock bee)

S PLEASE SEE REVERSE SIDE.

i

]

1 ﬁ
,1

DO Jiw% W73 eomion or 1 wov s is ossorere UNCLASSIFIED

S/N 0102- L= )14. 860!

e
SECUMTY CLASSIZICATION OF THIS PAGE (When Dete Entered)

e T

z’ *
i
A




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd)

T A

299

THE CLASSIFICATION AND MIXTURE MAXIMUM LIKELIHOOD
APPROACHES TO CLUSTER ANALYSIS

-~A review is undertaken of two maximum 1ikelihood approaches to
cluster analysis, the so-called classification and mixture maximum
likelihood methods. The basic assumptions of the two approaches and
their associated properties are contrasted, in particular for multi-
variate normal component distributions. The problem of deciding how
many clusters there are is discussed for each approach. Also, an
account is given of the relative efficiency of the mixture approach

to clustering.

L \ $/N 0102- LF- 014- 6601
o UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)




